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;\I 1. PLIA: Progress to date and plan for next 6
”L'\'ﬂ months.

BERKELEY LAB

1. Since August 2006 (effort level < 0.5 FTE. )

a) Tests with oil dielectric helix, Pyrex insulator: Pulser filter &
damping prevents primary current reversal --> only occasional
partial discharges.

b) Gradient improved to 6 kV/cm and presently limited by pulser.

c) Mechanism causing “partial discharges” has not been identified.

2. The plan through August 2007 is (effort level = 1 FTE):

a) Scaled helix assembly: test the partial discharge dependence on
various configurations (grading rings, external solenoidal field,
direct drive, etc.).

b) Modifications & testing to demonstrate gradient > 10 kV/cm.

c) NDCX-2: Physics and cost comparison of using PLIA vs a fully
induction acceleration based facility.

Enables key decisions regarding PLIA beam experiments & NDCX-2 design
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Oil dielectric & Pyrex insulator - added

,ﬂ diagnostics, bench test setup for gradient
improvements

BERKELEY LAB

Frreerer

Additional diagnostics: E-dots
every 10 cm, primary V and |
monitors.

New pulser circuit: filter to
eliminate high level ringing
@ =30 MHz (20x
fundamental frequency),

| i damping prevents primary
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’:>| Mechanism(s) causing the “partial discharges”
in the PLIA have not been identified

Data so far do not show “fundamental limit” on gradient suggested by adverse
secondary electron orbits (test particle simulations).

tiieldns
i f[ -
10}
£
3]
'ﬁ\.?:-;;:"\-i-. % E
WL SR = 5
\,r!i‘;‘ 2
X f' -
l‘ ’."
Ay _“ -10
X
ji—‘l _15 --.-.l....ld
0.0 0.5 Z(m)1 .0 1.5 0.0 0.5 Z(m)1'0 1.5
Snapshot of electron traces in wave frame 50.5 ns after launch at 2 cm increments.

Likely that high level ~ 30 MHz ringing in the previous pulser had deleterious
effects.
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/’\l 2. Recent, near term NDCX: test beam
’L'\'ﬂ manipulations common to all three WDM designs.

BERKELEY LAB

1. Simultaneous longitudinal bunching and transverse focusing
a) 2-4 ns FWHM, 2x reduction in transverse spot size (now
4-mm FWHM). Consistent with model predictions.
2. High field final focusing solenoid
a) Sub-mm spot size (from 4-mm above).
b) How to inject high-density plasma near target and in
solenoid field?
3. Bunching module waveform upgrades
a) 100 - 250 bunching ratio suggested by simulations.
b) HYV holding, waveform fidelity.
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] Simultaneous transverse and

| longitudinal compression experiments

Filtered cathodic-arc plasma source
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] Minimum spot size @ same time as

] peak compression

2X reduction in the spot
size (4X increase in
beam intensity) brings
the peak beam density
to the range n, =101 -
1012 cm?-s.
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] Setup of NDC with high field solenoid
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Simulation of both plasma sources operating near the 8.05T final-focus
solenoid, using fully kinetic and explicit particles with electromagnetlc fields .
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NDC with high field solenoid

Beam injection K+ Dipole Clearance gap 8.05 T solenoid MEVVA injection into
z=275cm, Ep, =327.4 keV, z=299 - z=395-405cm z=405- 414 cm final-focus solenoid
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A new bunching module will increase the voltage
amplitude and voltage ramp duration
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] Simulations of compression with new
il IBM
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Simulation above: 400 keV K*, 80mA --> 20A (250X),FWHM 2.3 ns, f =2.50 m
& Idealized initial transverse and longitudinal temperature = 0.2 eV,
& perfect bunching waveform.

For a final-focus solenoid with B = 8 Tesla: r, @ focal plane = 0.5 mm
Peak beam density n, = 7 x 103/ cm?3. Energy deposition = 2 J /cm?
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Some other critical issues distinguish
'ﬂ between the 3 WDM drivers

Li* ion source development is challenging; still a work-in-progress:
emitter preparation, current density, emission uniformity & beam quality.

The required target-heating uniformity for particular WDM experiments
needs to be further quantified for beams that are on the peak, and off the
peak of dE/dx. Relaxed requirements would allow heavier ions which
are easier to fabricate and operate.

Target preheat tolerances are being quantified for specific target
experiments. Ideas for increasing the contrast ratio between the
compressed bunch relative to the prepulse have been sketched out, but
require further work.

The maodifications to the beam optics for injection of the 1.6 MeV HCX
beam into an NDC channel require some study and simulation (eg:
matching quadrupoles, beam diagnostics modifications).
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